If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+4m+m^2+4m=0
We add all the numbers together, and all the variables
2m^2+8m=0
a = 2; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·2·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*2}=\frac{-16}{4} =-4 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*2}=\frac{0}{4} =0 $
| x=2.5(x-2003)+41 | | -36+2n=-7n | | 4(6+x)=12 | | 52-x=164 | | 3(x-3)+5(2-x)=16 | | (1/5)y-5=y-7 | | d.15=7 | | 172(x/60)=80 | | 9/2+w=5.4/w | | r^2+9r+88=0 | | (6x-7)=(10x+3) | | 14=4u-14 | | 1/2(x+4)=18 | | x^2+12x+27=0 | | 5x-21=7+7x | | 3x/11=x/6+7 | | 4z+3-z=2+2z+7 | | 2x+94+7x+49=180 | | 6r^2+9r+22=0 | | (9z2+5z+7)–(6z2+5z+1)=0 | | -2+5(1+x)=4x+3x-11 | | 12+x+1+2x=5x+1 | | (2-5q)=(-3) | | (13x+13)+(6x+3)=180° | | 6a+12+10=8-a+27 | | 3x-1/3=x/5+2 | | 4(x+2)=7x-3(x-2) | | -7(-3+3n)=7(-4n+1) | | 11w-10=-4+35 | | 3x+12=7x-18 | | 1/3(x+1)+2=1/6(3x-5) | | 4(3x-5)+2=5(2x-7)+x |